首頁> 外文學(xué)位 >Decentralized online clustering for supporting autonomic management of distributed systems.
【24h】

Decentralized online clustering for supporting autonomic management of distributed systems.

機(jī)譯:分散的在線集群,用于支持分布式系統(tǒng)的自主管理。

獲取原文
獲取原文并翻譯 | 示例

摘要

Distributed computational infrastructures, as well as the applications and services that they support, are increasingly becoming an integral part of society and affecting every aspect of life. As a result, ensuring their efficient and robust operation is critical. However, the scale and overall complexity of these systems is growing at an alarming rate (current data centers contain tens to hundreds of thousands of computing and storage devices running complex applications), making the management of these systems extremely challenging and rapidly exceeding human capability.;The large quantities of distributed system data, in the form of user and component interaction and status events, contain meaningful information that can be used to infer the states of different components or of the system as a whole. Accurate and timely knowledge of these states is essential for verifying the correctness and efficiency of the operation of the system, as well as for discovering specific situations of interest, such as anomalies or faults, that require the application of appropriate management actions.;Autonomic systems/applications must therefore be able to effectively process the large amounts of distributed data and to characterize operational states in a robust, accurate and timely manner. Although highly accurate, centralized approaches for distributed system management are infeasible in general because of the costs of centralization in terms of infrastructure, fault tolerance, and responsiveness. Since data is naturally distributed and the collective computing power of networked elements (ranging from sensor and device networks to supercomputer clusters and multi-organization grids) is enough to be harnessed for value added, system-level services, online and decentralized approaches for monitoring, data analysis, and self-management are not only feasible, but also quite attractive.;This work is based on the premise of realizing and applying online data analysis, exploiting the collective computing resources of distributed systems for supporting autonomic management capabilities. Specifically, we propose and develop decentralized online clustering as a data analysis mechanism and infrastructure, evaluate its accuracy and performance with respect to other known clustering methods, and apply it to the following autonomic management problems: (1) System profiling and outlier detection from distributed data, (2) definition, autonomic adaptation, and application of management policies, and (3) VM provisioning and energy management in data centers.
機(jī)譯:分布式計算基礎(chǔ)結(jié)構(gòu)及其支持的應(yīng)用程序和服務(wù)正日益成為社會不可分割的一部分,并影響生活的各個方面。因此,確保其高效而穩(wěn)定的運(yùn)行至關(guān)重要。但是,這些系統(tǒng)的規(guī)模和整體復(fù)雜性正以驚人的速度增長(當(dāng)前的數(shù)據(jù)中心包含數(shù)以萬計的運(yùn)行復(fù)雜應(yīng)用程序的計算和存儲設(shè)備),這使這些系統(tǒng)的管理極具挑戰(zhàn)性,并迅速超過了人類的能力。 ;大量的分布式系統(tǒng)數(shù)據(jù),以用戶和組件交互以及狀態(tài)事件的形式,包含有意義的信息,這些信息可用于推斷不同組件或整個系統(tǒng)的狀態(tài)。對這些狀態(tài)的準(zhǔn)確和及時的了解對于驗(yàn)證系統(tǒng)操作的正確性和效率以及發(fā)現(xiàn)感興趣的特定情況(如異?;蚬收希┬枰扇∵m當(dāng)?shù)墓芾泶胧┲陵P(guān)重要。因此,/應(yīng)用程序必須能夠有效地處理大量分布式數(shù)據(jù),并以健壯,準(zhǔn)確和及時的方式表征運(yùn)行狀態(tài)。盡管高度準(zhǔn)確的分布式系統(tǒng)管理集中式方法通常是不可行的,因?yàn)榧谢诨A(chǔ)結(jié)構(gòu),容錯和響應(yīng)方面存在成本。由于數(shù)據(jù)自然分布,并且網(wǎng)絡(luò)元素的集體計算能力(從傳感器和設(shè)備網(wǎng)絡(luò)到超級計算機(jī)集群和多個組織網(wǎng)格)足以用于增值,系統(tǒng)級服務(wù),在線和分散式監(jiān)控方法,數(shù)據(jù)分析和自我管理不僅可行,而且也很有吸引力。這項(xiàng)工作是在實(shí)現(xiàn)和應(yīng)用在線數(shù)據(jù)分析的前提下,利用分布式系統(tǒng)的集體計算資源來支持自主管理功能的。具體來說,我們提出并開發(fā)了分散式在線聚類作為數(shù)據(jù)分析機(jī)制和基礎(chǔ)結(jié)構(gòu),相對于其他已知聚類方法評估了其準(zhǔn)確性和性能,并將其應(yīng)用于以下自治管理問題:(1)從分布式進(jìn)行系統(tǒng)配置和異常檢測數(shù)據(jù);(2)定義,自主調(diào)整和管理策略的應(yīng)用;(3)數(shù)據(jù)中心中的VM供應(yīng)和能源管理。

著錄項(xiàng)

  • 作者

    Quiroz Hernandez, Andres.;

  • 作者單位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予單位 Rutgers The State University of New Jersey - New Brunswick.;
  • 學(xué)科 Engineering Electronics and Electrical.
  • 學(xué)位 Ph.D.
  • 年度 2010
  • 頁碼 148 p.
  • 總頁數(shù) 148
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類
  • 關(guān)鍵詞

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號

国产精品大尺度国模在线无码,在线求观看av网址,热99re久久国免费,久久555888视频